Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Absence of mitochondrial SLC25A51 enhances PARP1-dependent DNA repair by increasing nuclear NAD(+) levels
 
research article

Absence of mitochondrial SLC25A51 enhances PARP1-dependent DNA repair by increasing nuclear NAD(+) levels

Gueldenpfennig, Anka
•
Hopp, Ann-Katrin
•
Muskalla, Lukas
Show more
August 17, 2023
Nucleic Acids Research

Though the effect of the recently identified mitochondrial NAD(+) transporter SLC25A51 on glucose metabolism has been described, its contribution to other NAD(+)-dependent processes throughout the cell such as ADP-ribosylation remains elusive. Here, we report that absence of SLC25A51 leads to increased NAD(+) concentration not only in the cytoplasm and but also in the nucleus. The increase is not associated with upregulation of the salvage pathway, implying an accumulation of constitutively synthesized NAD(+) in the cytoplasm and nucleus. This results in an increase of PARP1-mediated nuclear ADP-ribosylation, as well as faster repair of DNA lesions induced by different single-strand DNA damaging agents. Lastly, absence of SLC25A51 reduces both MMS/Olaparib induced PARP1 chromatin retention and the sensitivity of different breast cancer cells to PARP1 inhibition. Together these results provide evidence that SLC25A51 might be a novel target to improve PARP1 inhibitor based therapies by changing subcellular NAD(+) redistribution.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés