Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Integrated Thermal Management for a High-Power-Density Silicon Carbide Power Module With Die-Level Heat Flux Over 1000 W/cm2
 
research article

Integrated Thermal Management for a High-Power-Density Silicon Carbide Power Module With Die-Level Heat Flux Over 1000 W/cm2

Tang, Weiyu  
•
Huang, Xiangbo
•
Chen, Zhixin
Show more
December 30, 2025
Ieee Journal Of Emerging And Selected Topics In Power Electronics

As the continuous miniaturization of silicon carbide (SiC) devices promotes the die-level heat flux up to 1 kW/cm2, efficient thermal management is critical for the current load and reliability of power electronics. This work describes the design, fabrication, and performance of an integrated-cooling strategy for power electronics. The strategy includes a low thermal resistance package (directly bonded heat sinks by nanosilver sintering) and an integrated convective cooling approach [manifold microchannels (MMCs)]. After careful numerical optimization, three prototypes of SiC power modules were then fabricated to characterize their performance. The final design has demonstrated a six-chip compact package (~30 cm3, including heat sink and power devices), and heat fluxes over 1000 W/cm2 (total heat loss 1500 W) were dissipated with an ultralow thermal resistance of 9.85 mm2 .kW-1 at a flowrate of 2.16 L/min. A further benchmark comparison indicated that the microchannel cooling could simultaneously provide 80% and 83% lower thermal resistance and pumping power, respectively, than the conventional liquid-cooled power modules. Besides, this integrated-cooling architecture could enable two times higher output current through a fully compatible packaging process, which could provide a promising solution for the reliable compact integration of SiC devices.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés