Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy
 
research article

Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy

Laplanche, G.
•
Bonneville, J.
•
Varvenne, C.
Show more
2018
Acta Materialia

To reveal the operating mechanisms of plastic deformation in an FCC high-entropy alloy, the activation volumes in CrMnFeCoNi have been measured as a function of plastic strain and temperature between 77 K and 423 K using repeated load relaxation experiments. At the yield stress, sigma(y), the activation volume varies from similar to 60 b(3) at 77 K to similar to 360 b(3) at 293 K and scales inversely with yield stress. With increasing plastic strain, the activation volume decreases and the trends follow the Cottrell-Stokes law, according to which the inverse activation volume should increase linearly with sigma - sigma(y) (Haasen plot). This is consistent with the notion that hardening due to an increase in the density of forest dislocations is naturally associated with a decrease in the activation volume because the spacing between dislocations decreases. The values and trends in activation volume agree with theoretical predictions that treat the HEA as a high-concentration solid-solution-strengthened alloy. These results demonstrate that this HEA deforms by the mechanisms typical of solute strengthening in FCC alloys, and thus indicate that the high compositional/structural complexity does not introduce any new intrinsic deformation mechanisms. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

laplanche et al. acta mat - concatenate -postprint.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY-NC-ND

Size

1.09 MB

Format

Adobe PDF

Checksum (MD5)

2ce9ce1921af960a0c714269a60fedbc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés