Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Effects of Connectivity and Recurrent Local Disturbances on Community Structure and Population Density in Experimental Metacommunities
 
research article

Effects of Connectivity and Recurrent Local Disturbances on Community Structure and Population Density in Experimental Metacommunities

Altermatt, Florian
•
Bieger, Annette
•
Carrara, Francesco  
Show more
2011
Plos One

Metacommunity theory poses that the occurrence and abundance of species is a product of local factors, including disturbance, and regional factors, like dispersal among patches. While metacommunity ideas have been broadly tested there is relatively little work on metacommunities subject to disturbance. We focused on how localized disturbance and dispersal interact to determine species composition in metacommunities. Experiments conducted in simple two-patch habitats containing eight protozoa and rotifer species tested how dispersal altered community composition in both communities that were disturbed and communities that connected to refuge communities not subject to disturbance. While disturbance lowered population densities, in disturbed patches connected to undisturbed patches this was ameliorated by immigration. Furthermore, species with high dispersal abilities or growth rates showed the fastest post-disturbance recovery in presence of immigration. Connectivity helped to counteract the negative effect of disturbances on local populations, allowing mass-effect-driven dispersal of individuals from undisturbed to disturbed patches. In undisturbed patches, however, local population sizes were not significantly reduced by emigration. The absence of a cost of dispersal for undisturbed source populations is consistent with a lack of complex demography in our system, such as age-or sex-specific emigration. Our approach provides an improved way to separate components of population growth from organisms' movement in post-disturbance recovery of (meta) communities. Further studies are required in a variety of ecosystems to investigate the transient dynamics resulting from disturbance and dispersal.

  • Details
  • Metrics
Type
research article
DOI
10.1371/journal.pone.0019525
Web of Science ID

WOS:000290024700201

Author(s)
Altermatt, Florian
Bieger, Annette
Carrara, Francesco  
Rinaldo, Andrea  
Holyoak, Marcel
Date Issued

2011

Publisher

Public Library of Science

Published in
Plos One
Volume

6

Issue

4

Article Number

e19525

Subjects

Source-Sink Dynamics

•

Dependent Dispersal

•

Heterogeneous Metacommunities

•

Metapopulation Dynamics

•

Microcosm Experiment

•

Species-Diversity

•

Marine Reserves

•

Habitat Patches

•

Spatial Scales

•

Trade-Offs

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
ECHO  
Available on Infoscience
July 21, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69675
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés