Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Innovative and stable TiO2 supported catalytic surfaces removing aldehydes under UV-light irradiation
 
research article

Innovative and stable TiO2 supported catalytic surfaces removing aldehydes under UV-light irradiation

Elfalleh, W.
•
Assadi, A. A.
•
Bouzaza, A.
Show more
2017
Journal Of Photochemistry And Photobiology A-Chemistry

The present study reports the photocatalytic degradation of aldehydes using TiO2 impregnated polyester (PES) and glass fiber (GFT)-TiO2 addressing the photocatalytic degradation aldehydes (air-solid interface). The PES-TiO2 optical absorption was determined by diffuse reflectance spectroscopy (DRS). By X-ray diffraction (XRD), the formation of TiO2 anatase on the PES surface was detected. The photocatalytic oxidation (PCO) of butyraldehyde and isovaleraldehyde was carried out in a batch photo-reactor equipped with a UV-mercury Philips 9W lamp and mediated by glass fiber GFT-TiO2 and PES-TiO2 surfaces. The removal of these two aldehydes was found to be a function of pollutant concentrations. The stable catalytic reuse of both catalysts reported. A Langmuir Hinshelwood (L-H) model describes the degradation kinetics on PES-TiO2 and on GFF-TiO2. The aldehyde degradation by-products were analyzed by gas chromatography mass spectrometry (GC-MS). Three organics intermediates identified during the aldehyde degradation were: acetones, alcohols and fatty acids. (C) 2017 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés