Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers
 
research article

Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers

Mathew, Simon  
•
Yella, Aswani  
•
Gao, Peng  
Show more
2014
Nature Chemistry

Dye-sensitized solar cells have gained widespread attention in recent years because of their low production costs, ease of fabrication and tunable optical properties, such as colour and transparency. Here, we report a molecularly engineered porphyrin dye, coded SM315, which features the prototypical structure of a donor-pi-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties. Linear-response, time-dependent density functional theory was used to investigate the perturbations in the electronic structure that lead to improved light harvesting. Using SM315 with the cobalt(II/III) redox shuttle resulted in dye-sensitized solar cells that exhibit a high open-circuit voltage V-OC of 0.91 V, short-circuit current density J(SC) of 18.1 mA cm(-2), fill factor of 0.78 and a power conversion efficiency of 13%.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Full Text.pdf

Access type

openaccess

Size

2.13 MB

Format

Adobe PDF

Checksum (MD5)

78e6ec30f0287f128369d328030aa5c1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés