Learning residual coding for point clouds
Recent advancements in acquisition of three-dimensional models have been increasingly drawing attention to imaging modalities based on the plenoptic representations, such as light fields and point clouds. Since point cloud models can often contain millions of points, each including both geometric positions and associated attributes, efficient compression schemes are needed to enable transmission and storage of this type of media. In this paper, we present a detachable learning-based residual module for point cloud compression that allows for efficient scalable coding. Our proposed method is able to learn the encoding of residuals in any layered architecture, and is here implemented in a hybrid approach using both TriSoup and Octree modules from the G-PCC standard as its base layer. Results indicate that the proposed method can achieve performance gains in terms of rate-distortion when compared to both base layer alone, which is demonstrated both through objective metrics and subjective perception of quality in a rate-distortion framework. The source code of the proposed codec can be found at https://github.com/mmspg/learned-residual-pcc.
2021-08-01
13
11842
223
235
Copyright 2021 Society of PhotoOptical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Link to source code repository
NON-REVIEWED
EPFL
Event name | Event place | Event date |
San Diego, USA | August 1-5, 2021 | |