Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Study of the twinned dendrite tip shape I : Phase-field modeling
 
research article

Study of the twinned dendrite tip shape I : Phase-field modeling

Salgado-Ordorica, M. A.
•
Desbiolles, J.-L.  
•
Rappaz, M.  
2011
Acta Materialia

The growth kinetics advantage of twinned aluminum dendrites over regular ones is still an unsolved problem of solidification. Although it is linked to the tip geometry, the influence of a coherent (1 1 1) twin plane on a < 1 1 0 > twinned dendrite tip is unclear, despite several past experimental observations. In the present contribution, a three-dimensional phase field model implemented on a cluster of parallel computers has been used to simulate the growth of a twinned dendrite under various directional solidification conditions. Only half a dendrite was modeled by replacing the coherent twin plane by a boundary with an appropriate condition on the phase parameter that is equivalent to the Young-Laplace equilibrium condition along the triple line between twinned solid, untwinned solid and liquid. It is found that the small liquid cusp present at the tip rapidly evolves into a doublon-type morphology, i.e. a < 1 1 0 > dendrite split in its center by a deep and thin liquid pool with the triple line at the root. At high growth rates, the two sides of the doublon tend to coalescence and form small isolated liquid droplets. The positive concentration gradient near the doublon root appears to be rapidly smeared out by back-diffusion in the solid, thus making difficult its quantification through experimental methods. These simulation results are correlated with new experimental evidence presented in a companion paper. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/j.actamat.2011.04.033
Web of Science ID

WOS:000293113600003

Author(s)
Salgado-Ordorica, M. A.
Desbiolles, J.-L.  
Rappaz, M.  
Date Issued

2011

Publisher

Elsevier

Published in
Acta Materialia
Volume

59

Start page

5074

End page

5084

Subjects

Twinned dendrites

•

Phase field

•

Doublon growth

•

Aluminum alloys

•

Solidification

•

Growth Morphologies

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSMX  
Available on Infoscience
December 16, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/73686
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés