Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers
 
research article

Direct protein crystallization on ultrathin membranes for diffraction measurements at X-ray free-electron lasers

Opara, Nadia
•
Martiel, Isabelle
•
Arnold, Stefan A.
Show more
June 1, 2017
Journal of Applied Crystallography

A new era of protein crystallography started when X-ray free-electron lasers (XFELs) came into operation, as these provide an intense source of X-rays that facilitates data collection in the 'iffract-before-destroy' regime. In typical experiments, crystals sequentially delivered to the beam are exposed to X-rays and destroyed. Therefore, the novel approach of serial crystallography requires thousands of nearly identical samples. Currently applied sample-delivery methods, in particular liquid jets or drop-on-demand systems, suffer from significant sample consumption of the precious crystalline material. Direct protein microcrystal growth by the vapour diffusion technique inside arrays of nanolitre-sized wells is a method specifically tailored to crystallography at XFELs. The wells, with X-ray transparent Si3N4 windows as bottoms, are fabricated in silicon chips. Their reduced dimensions can significantly decrease protein specimen consumption. Arrays provide crystalline samples positioned in an ordered way without the need to handle fragile crystals. The nucleation process inside these microfabricated cavities was optimized to provide high membrane coverage and a quasi-random crystal distribution. Tight sealing of the chips and protection of the crystals from dehydration were achieved, as confirmed by diffraction experiments at a protein crystallography beamline. Finally, the test samples were shown to be suitable for time-resolved measurements at an XFEL at femtosecond resolution.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés