Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Gradient Heating Epitaxial Growth Gives Well Lattice-Matched Mo2C-Mo2N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting
 
research article

Gradient Heating Epitaxial Growth Gives Well Lattice-Matched Mo2C-Mo2N Heterointerfaces that Boost Both Electrocatalytic Hydrogen Evolution and Water Vapor Splitting

Zhang, Youzi
•
Guo, Peng
•
Guo, Shaohui
Show more
October 25, 2022
Angewandte Chemie International Edition

An optimized approach to producing lattice-matched heterointerfaces for electrocatalytic hydrogen evolution has not yet been reported. Herein, we present the synthesis of lattice-matched Mo2C-Mo2N heterostructures using a gradient heating epitaxial growth method. The well lattice-matched heterointerface of Mo2C-Mo2N generates near-zero hydrogen-adsorption free energy and facilitates water dissociation in acid and alkaline media. The lattice-matched Mo2C-Mo2N heterostructures have low overpotentials of 73 mV and 80 mV at 10 mA cm(-2) in acid and alkaline solutions, respectively, comparable to commercial Pt/C. A novel photothermal-electrocatalytic water vapor splitting device using the lattice-matched Mo2C-Mo2N heterostructure as a hydrogen evolution electrocatalyst displays a competitive cell voltage for electrocatalytic water splitting.

  • Details
  • Metrics
Type
research article
DOI
10.1002/anie.202209703
Web of Science ID

WOS:000871726900001

Author(s)
Zhang, Youzi
Guo, Peng
Guo, Shaohui
Xin, Xu
Wang, Yijin
Huang, Wenjing
Wang, Maohuai
Yang, Bowen  
Sobrido, Ana Jorge
Ghasemi, Jahan B.
Show more
Date Issued

2022-10-25

Publisher

Wiley-VCH Verlag GmbH

Published in
Angewandte Chemie International Edition
Volume

61

Issue

47

Article Number

e202209703

Subjects

Chemistry, Multidisciplinary

•

Chemistry

•

heterointerfaces

•

hydrogen evolution

•

lattice-matched

•

mo2c-mo2n

•

water vapor splitting

•

molybdenum carbide

•

efficient

•

performance

•

mo2c

•

catalysis

•

hybrid

•

robust

•

mos2

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LSPM  
Available on Infoscience
November 7, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/192029
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés