Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Understanding climate change from a global analysis of city analogues
 
research article

Understanding climate change from a global analysis of city analogues

Añel, Juan A.
•
Bastin, Jean-Francois
•
Clark, Emily
Show more
July 10, 2019
PLOS ONE

Combating climate change requires unified action across all sectors of society. However, this collective action is precluded by the ‘consensus gap’ between scientific knowledge and public opinion. Here, we test the extent to which the iconic cities around the world are likely to shift in response to climate change. By analyzing city pairs for 520 major cities of the world, we test if their climate in 2050 will resemble more closely to their own current climate conditions or to the current conditions of other cities in different bioclimatic regions. Even under an optimistic climate scenario (RCP 4.5), we found that 77% of future cities are very likely to experience a climate that is closer to that of another existing city than to its own current climate. In addition, 22% of cities will experience climate conditions that are not currently experienced by any existing major cities. As a general trend, we found that all the cities tend to shift towards the sub-tropics, with cities from the Northern hemisphere shifting to warmer conditions, on average ~1000 km south (velocity ~20 km.year-1), and cities from the tropics shifting to drier conditions. We notably predict that Madrid’s climate in 2050 will resemble Marrakech’s climate today, Stockholm will resemble Budapest, London to Barcelona, Moscow to Sofia, Seattle to San Francisco, Tokyo to Changsha. Our approach illustrates how complex climate data can be packaged to provide tangible information. The global assessment of city analogues can facilitate the understanding of climate change at a global level but also help land managers and city planners to visualize the climate futures of their respective cities, which can facilitate effective decision-making in response to on-going climate change.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1371/journal.pone.0217592
Author(s)
Añel, Juan A.
Bastin, Jean-Francois
Clark, Emily
Elliott, Thomas
Hart, Simon
van den Hoogen, Johan
Hordijk, Iris
Ma, Haozhi
Majumder, Sabiha
Manoli, Gabriele  
Show more
Date Issued

2019-07-10

Published in
PLOS ONE
Volume

14

Issue

7

Article Number

e0217592

Editorial or Peer reviewed

NON-REVIEWED

Written at

OTHER

EPFL units
URBES  
Available on Infoscience
October 5, 2022
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/191210
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés