Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Unsupervised Speech/Non-speech Detection for Automatic Speech Recognition in Meeting Rooms
 
report

Unsupervised Speech/Non-speech Detection for Automatic Speech Recognition in Meeting Rooms

Maganti, Hari Krishna
•
Motlicek, Petr
•
Gatica-Perez, Daniel  
2006

The goal of this work is to provide robust and accurate speech detection for automatic speech recognition (ASR) in meeting room settings. The solution is based on computing long-term modulation spectrum, and examining specific frequency range for dominant speech components to classify speech and non-speech signals for a given audio signal. Manually segmented speech segments, short-term energy, short-term energy and zero-crossing based segmentation techniques, and a recently proposed Multi Layer Perceptron (MLP) classifier system are tested for comparison purposes. Speech recognition evaluations of the segmentation methods are performed on a standard database and tested in conditions where the signal-to-noise ratio (SNR) varies considerably, as in the cases of close-talking headset, lapel, distant microphone array output, and distant microphone. The results reveal that the proposed method is more reliable and less sensitive to mode of signal acquisition and unforeseen conditions.

  • Files
  • Details
  • Metrics
Type
report
Author(s)
Maganti, Hari Krishna
Motlicek, Petr
Gatica-Perez, Daniel  
Date Issued

2006

Publisher

IDIAP

URL

URL

http://publications.idiap.ch/downloads/reports/2006/rr06-57.pdf
Written at

EPFL

EPFL units
LIDIAP  
Available on Infoscience
February 11, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/46821
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés