Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions
 
research article

Gaussian distribution for the divisor function and Hecke eigenvalues in arithmetic progressions

Fouvry, Etienne
•
Ganguly, Satadal
•
Kowalski, Emmanuel
Show more
2014
Commentarii Mathematici Helvetici

We show that, in a restricted range, the divisor function of integers in residue classes modulo a prime follows a Gaussian distribution, and a similar result for Hecke eigenvalues of classical holomorphic cusp forms. Furthermore, we obtain the joint distribution of these arithmetic functions in two related residue classes. These results follow from asymptotic evaluations of the relevant moments, and depend crucially on results on the independence of monodromy groups related to products of Kloosterman sums.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.4171/Cmh/342
Web of Science ID

WOS:000345957900009

Author(s)
Fouvry, Etienne
Ganguly, Satadal
Kowalski, Emmanuel
Michel, Philippe  
Date Issued

2014

Publisher

European Mathematical Soc

Published in
Commentarii Mathematici Helvetici
Volume

89

Issue

4

Start page

979

End page

1014

Subjects

Divisor function

•

Hecke eigenvalues

•

Fourier coefficients of modular forms

•

arithmetic progressions

•

central limit theorem

•

Kloosterman sums

•

monodromy group

•

Sato-Tate equidistribution

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TAN  
Available on Infoscience
February 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111549
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés