Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Dissipative coherent structures and satellite comb generation in dispersion-periodic Kerr microresonators
 
conference paper

Dissipative coherent structures and satellite comb generation in dispersion-periodic Kerr microresonators

Anderson, Miles H.  
•
Tikan, Alexey  
•
Tusnin, Aleksandr  
Show more
September 4, 2023
2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)
Conference on Lasers and Electro-Optics/Europe (CLEO/Europe 2023) and European Quantum Electronics Conference (EQEC 2023)

Recent developments of integrated photonic platforms have opened unique possibilities for on-chip generation of coherent and broadband frequency combs, both in normal and anomalous dispersion regimes via the generation of coherent nonlinear structures [1]. The potential role played by quasi-phase matching in dispersion engineering for this has remained an open question. As it happens, Si3N4 microresonator frequency combs typically employ waveguides with a large cross sections to reduce propagation loss and to reach anomalous dispersion. Coupling between transverse spatial modes can interfere with stable microcomb generation, so a narrow tapered mode ‘suppression’ section can be added to the microresonator in order to alleviate this issue [2] (Fig. 1(a)). In our experiment, we found that this tapered waveguide section provided precisely this quasi-phase matching between higher order of dispersion, leading to the emergence of Faraday Instability (FI) [3]. When combined with synchronous pulse-driving in a microresonator having normal dispersion on average [4], we observe FI combined with switching wave formation to generate ‘satellite’ switching wave microcombs.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés