Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. How Users Perceive and Appraise Personalised Recommendations
 
conference poster not in proceedings

How Users Perceive and Appraise Personalised Recommendations

Nicolas, Jones  
•
Pearl, Pu  
•
Li, Chen
2009
User Modelling, Adaptation and Personalization

Traditional websites have long relied on users revealing their preferences explicitly through direct manipulation interfaces. However recent recommender systems have gone as far as using implicit feedback indicators to understand users' interests. More than a decade after the emergence of recommender systems, the question whether users prefer them compared to stating their preferences explicitly, largely remains a subject of study. Even though some studies were found on users' acceptance and perceptions of this technology, these were general marketing-oriented surveys. In this paper we report an in-depth user study comparing Amazon's implicit book recommender with a baseline model of explicit search and browse. We address not only the question "do people accept recommender systems" but also how or under what circumstances they do and more importantly, what can still be improved.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés