Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Ultrafast laser interaction with transparent multi-layer SiO2/Si3N4 films
 
research article

Ultrafast laser interaction with transparent multi-layer SiO2/Si3N4 films

Ricca, Ruben  
•
Boureau, Victor  
•
Bellouard, Yves  
December 29, 2021
Journal of Applied Physics

We investigate the use of ultrafast lasers exposure to induce localized crystallization and elemental redistribution in amorphous dielectric multi-layers, composed of alternating Si3N4 and SiO2 layers of sub-micrometer thickness. Specifically, we report on the occurrence of a laser-induced elemental intermixing process and the presence of silicon nanocrystals clusters localized within the multi-layers structure. The spatial distribution of these clusters goes significantly beyond the zone under direct laser exposure providing evidence of energy being channeled transversely to the laser propagation axis at the interface of the nanoscale layers. Thanks to the extreme conditions reigning during laser exposure, this process transposed to various materials may offer a pathway for local and selective crystallization of a variety of compounds and phases, difficult to obtain otherwise.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2112.00997.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

License Condition

CC BY

Size

653.07 KB

Format

Adobe PDF

Checksum (MD5)

2410b3967429959892087ce5d6c81815

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés