Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Solidification of binary hypoeutectic alloy matrix composite castings
 
research article

Solidification of binary hypoeutectic alloy matrix composite castings

Mortensen, A.  
•
Flemings, M. C.
1996
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

We consider a binary hypoeutectic alloy casting which solidifies in dendritic form in an unreinforced engineering casting and seek to predict its microstructure in a metal matrix composite. We focus on the case where the reinforcement is fixed in space and fairly homogeneously distributed. We assume that the reinforcement does not catalyze heterogeneous nucleation of the solid. We show that the reinforcement can cause several microstructural transitions in the matrix alloy, depending on the matrix cooling rate, the width, Lambda, of interstices left between reinforcing elements, and the initial velocity V of the solidification front. These transitions comprise the following: (1) coalescence of dendrite arms before solidification is complete, causing solidification to proceed in the later stages of solidification with a nondendritic primary phase mapping the geometry of interstices delineated by reinforcement elements; (2) sharp reduction or elimination of microsegregation in the matrix by diffusion in the primary solid matrix phase; and (3) a transition from dendrite to cell formation, these cells featuring significant undercoolings or a nearly plane front configuration when reinforcing elements are sufficiently fine. Quantitative criteria are derived for these transitions, based on previous work on composite solidification, observations from directional solidification experiments, and current solidification theory. Theory is compared with experimental data for aluminum-copper alloys reinforced with alumina fibers and for the dendrite to cell transition using data from directional succinonitrile-acetone solidification experiments. Theory and experiment show good agreement in both systems.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1007/BF02648949
Scopus ID

2-s2.0-0030109117

Author(s)
Mortensen, A.  
Flemings, M. C.
Date Issued

1996

Published in
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Volume

27

Issue

3

Start page

595

End page

609

Subjects

Alumina

•

Aluminum copper alloys

•

Binary alloys

•

Geometry

•

Metal castings

•

Microstructure

•

Nucleation

•

Phase transitions

•

Reinforcement

•

Segregation (metallography)

•

Solidification

•

Binary hypoeutectic alloy matrix composite castings

•

Interstices

•

Matrix cooling rate

•

Microsegregation

•

Microstructural transitions

•

Metallic matrix composites

Note

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMM  
Available on Infoscience
October 9, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/235089
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés