Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Buried SnI<sub>2</sub> Induces Gradient Heterojunctions in Sn–Pb Perovskite Solar Cells
 
research article

Buried SnI2 Induces Gradient Heterojunctions in Sn–Pb Perovskite Solar Cells

Liu, Xuewei
•
Xu, Jia
•
Zhao, Chenxu  
Show more
April 3, 2025
ACS Energy Letters

Tin–lead (Sn–Pb) mixed perovskite solar cells (PSCs) offer the potential for higher power conversion efficiency (PCE) than their pure lead counterparts. However, the lack of a well-defined Sn/Pb compositional profile results in disordered internal electric fields, limiting carrier separation. Here, we introduce a SnI2 predeposition strategy that induces a vertical Sn/Pb composition gradient within the perovskite film. This gradient forms a continuous heterojunction, establishing a built-in electric field that enhances carrier separation and directional extraction. As a result, the optimized devices achieve a PCE of 23.2% along with improved stability, retaining 89.6% of their initial efficiency after 1032 h of storage in nitrogen. This work demonstrates a compositional and interfacial engineering approach for advancing the efficiency and durability of Sn–Pb mixed PSCs.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés