Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Optimal polynomial blow up range for critical wave maps
 
research article

Optimal polynomial blow up range for critical wave maps

Gao, Can  
•
Krieger, Joachim  
2015
Communications on Pure and Applied Analysis

We prove that the critical Wave Maps equation with target $S^2$ and origin $\R^{2+1}$ admits energy class blow up solutions of the form $[ u(t, r) = Q(\lambda(t)r) + \eps(t, r) ]$ where $Q:\R^2\rightarrow S^2$ is the ground state harmonic map and $\lambda(t) = t^{-1-\nu}$ for any $\nu>0$. This extends the work $\cite{KST0}$, where such solutions were constructed under the assumption $\nu>\frac{1}{2}$. In light of a result of Struwe $\cite{Struwe1}$, our result is optimal for polynomial blow up rates.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés