Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Complexity-Effective Architecture for Accelerating Full-System Multiprocessor Simulations Using FPGAs
 
conference paper

A Complexity-Effective Architecture for Accelerating Full-System Multiprocessor Simulations Using FPGAs

Chung, Eric S.
•
Nurvitadhi, Eriko
•
Hoe, James C.
Show more
2008
Proceedings of the International Symposium on Field-Programmable Gate Arrays
16th international ACM/SIGDA symposium on Field programmable gate arrays (FPGA)

Functional full-system simulators are powerful and versatile research tools for accelerating architectural exploration and advanced software development. Their main shortcoming is limited throughput when simulating systems with hundreds of processors or more. To overcome this bottleneck, we propose the PROTOFLEX simulation architecture, which uses FPGAs to accelerate simulation. Prior FPGA approaches that prototype a complete system in hardware are either too complex when scaling to large-scale configurations or require significant effort to provide full-system support. In contrast, PROTOFLEX reduces complexity by virtualizing the execution of many logical processors onto a consolidated set of multiple-context execution engines on the FPGA. Through virtualization, the number of engines can be judiciously scaled, as needed, to deliver on necessary simulation performance. To achieve low-complexity full-system support, a hybrid simulation technique called transplanting allows implementing in the FPGA only the frequently encountered behaviors, while a software simulator preserves the abstraction of a complete system We have created a first instance of the PROTOFLEX simulation architecture, which is an FPGA-based, full-system functional simulator for a 16-way UltraSPARC III symmetric multiprocessor server hosted on a single Xilinx Virtex-II XCV2P70 FPGA. On average, the simulator achieves a 39x speedup (and as high as 49x) over comparable software simulation across a suite of applications, including OLTP on a commercial database server.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

protoflex_fpga08.pdf

Access type

openaccess

Size

415.83 KB

Format

Adobe PDF

Checksum (MD5)

11c596bba7529eee08a6085640cb74bc

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés