Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. Numerical approximation of a control problem for advection-diffusion processes
 
book part or chapter

Numerical approximation of a control problem for advection-diffusion processes

Quarteroni, Alfio  
•
Rozza, Gianluigi  
•
Dede', Luca  
Show more
2006
System modeling and optimization

Two different approaches are proposed to enhance the efficiency of the numerical resolution of optimal control problems governed by a linear advection-diffusion equation. In the framework of the Galerkin-Finite Element (FE) method, we adopt a novel a posteriori error estimate of the discretization error on the cost functional; this estimate is used in the course of a numerical adaptive strategy for the generation of efficient grids for the resolution of the optimal control problem. Moreover, we propose to solve the control problem by adopting a reduced basis (RB) technique, hence ensuring rapid, reliable and repeated evaluations of input-output relationship. Our numerical tests show that by this technique a substantial saving of computational costs can be achieved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés