Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development
 
research article

Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development

Playfoot, Christopher J
•
Sheppard, Shaoline
•
Planet, Evarist
Show more
June 22, 2022
RNA

Transposable elements (TEs) contribute to the evolution of gene regulatory networks and are dynamically expressed throughout human brain development and disease. One gene regulatory mechanism influenced by TEs is the miRNA system of post-transcriptional control. miRNA sequences frequently overlap TE loci and this miRNA expression landscape is crucial for control of gene expression in adult brain and different cellular contexts. Despite this, a thorough investigation of the spatiotemporal expression of TE-embedded miRNAs in human brain development is lacking. Here, we identify a spatiotemporally dynamic TE-embedded miRNA expression landscape between childhood and adolescent stages of human brain development. These miRNAs sometimes arise from two apposed TEs of the same subfamily, such as for L2 or MIR elements, but in the majority of cases stem from solo TEs. They give rise to in silico predicted high-confidence pre-miRNA hairpin structures, likely represent functional miRNAs and have predicted genic targets associated with neurogenesis. TE-embedded miRNA expression is distinct in the cerebellum when compared to other brain regions, as has previously been described for gene and TE expression. Furthermore, we detect expression of previously non-annotated TE-embedded miRNAs throughout human brain development, suggestive of a previously undetected miRNA control network. Together, as with non-TE-embedded miRNAs, TE-embedded sequences give rise to spatiotemporally dynamic miRNA expression networks, the implications of which for human brain development constitute extensive avenues of future experimental research. To facilitate interactive exploration of these spatiotemporal miRNA expression dynamics, we provide the "Brain miRTExplorer" web application freely accessible for the community.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RNA-2022-Playfoot-rna.079100.122.pdf

Type

Postprint

Version

Accepted version

Access type

openaccess

License Condition

CC BY-NC

Size

1009.05 KB

Format

Adobe PDF

Checksum (MD5)

75de688a844900d98bddb648368aba1e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés