Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Model Predictive Control for Multi-Agent Systems under Limited Communication and Time-Varying Network Topology
 
conference paper

Model Predictive Control for Multi-Agent Systems under Limited Communication and Time-Varying Network Topology

Saccani, Danilo  
•
Fagiano, Lorenzo
•
Zeilinger, Melanie N.
Show more
January 1, 2023
2023 62Nd Ieee Conference On Decision And Control, Cdc
62nd IEEE Conference on Decision and Control (CDC)

In control system networks, reconfiguration of the controller when agents are leaving or joining the network is still an open challenge, in particular when operation constraints that depend on each agent's behavior must be met. Drawing our motivation from mobile robot swarms, in this paper, we address this problem by optimizing individual agent performance while guaranteeing persistent constraint satisfaction in presence of bounded communication range and time-varying network topology. The approach we propose is a model predictive control (MPC) formulation, building on multi-trajectory MPC (mt-MPC) concepts. To enable plug and play operations when the system is in closed-loop without the need of a request, the proposed MPC scheme predicts two different state trajectories in the same finite horizon optimal control problem. One trajectory drives the system to the desired target, assuming that the network topology will not change in the prediction horizon, while the second one ensures constraint satisfaction assuming a worst-case scenario in terms of new agents joining the network in the planning horizon. Recursive feasibility and stability of the closed-loop system during plug and play operations are shown. The approach effectiveness is illustrated with a numerical simulation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés