Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Seebeck Coefficient of Ionic Conductors from Bayesian Regression Analysis
 
research article

Seebeck Coefficient of Ionic Conductors from Bayesian Regression Analysis

Drigo, Enrico
•
Baroni, Stefano
•
Pegolo, Paolo  
June 10, 2024
Journal of Chemical Theory and Computation

We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the probability distribution of the off-diagonal elements of a Wishart matrix, we develop a consistent and unbiased estimator for the Seebeck coefficient, whose statistical uncertainty can be arbitrarily reduced in the long-time limit. We assess the efficacy of our method by benchmarking it against extensive equilibrium molecular dynamics simulations conducted on molten CsF using empirical force fields. We then employ this procedure to calculate the Seebeck coefficient of molten NaCl, KCl, and LiCl using neural network force fields trained on ab initio data over a range of pressure-temperature conditions.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés