Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Experimental demonstration of an up-down asymmetry effect on intrinsic rotation in the TCV tokamak
 
conference paper

Experimental demonstration of an up-down asymmetry effect on intrinsic rotation in the TCV tokamak

Camenen, Y.  
•
Bortolon, A.  
•
Duval, B. P.  
Show more
2010
Plasma Physics and Controlled Fusion
37th European Physical Society Conference on Plasma Physics

A new mechanism has recently been proposed that generates a radial flux of parallel momentum in toroidal plasmas. Namely, by considering up-down asymmetric flux surfaces, the symmetry following the magnetic field can be broken and an additional contribution to the turbulent momentum flux arises, potentially changing the intrinsic rotation profile. These predictions are tested with specific experiments on TCV. The intrinsic toroidal rotation is observed to change by roughly a factor of two when changing the up-down asymmetry of the plasma. More precisely, the toroidal rotation gradient changes in the outer part of the plasma, where the flux surface asymmetry is the highest. The experiments were performed for all combinations of the toroidal magnetic field and plasma current directions, that affect the sign of the predicted up-down asymmetry flux. In each case the variation of the intrinsic rotation profile with the up-down asymmetry is observed in the direction predicted by the theory.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés