Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Spatial coherence properties of an LED-based illumination system for mask-aligner lithography
 
conference paper

Spatial coherence properties of an LED-based illumination system for mask-aligner lithography

Bernasconi, Johana  
•
Scharf, Toralf  
•
Kirner, Raoul  
Show more
2019
Novel Patterning Technologies for Semiconductors, MEMS/NEMS, and MOEMS 2019
Novel Patterning Technologies for Semiconductors, MEMS/NEMS, and MOEMS 2019

A high-power LED-based illumination system has been developed as a replacement for the mercury arc lamps used in mask-aligner lithography. LEDs are arranged in a grid array and placed in the entrance aperture of individual reflectors. Those reflectors decrease the angular extent of the light. With this multisource approach, different groups of LEDs can be switched on independently. The illumination patterns created determine the illumination angles and the spatial coherence in the mask plane. The spatial coherence is measured in the mask plane by using a circular double slits approach. The interference pattern for different illumination patterns are measured, showing the effect of the asymmetry and size of the angular extent of the illumination light. The effect of the different illumination patterns on the quality of the prints are also illustrated with print tests.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés