Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multi-Component Ginzburg-Landau Theory: Microscopic Derivation and Examples
 
research article

Multi-Component Ginzburg-Landau Theory: Microscopic Derivation and Examples

Frank, Rupert L.
•
Lemm, Marius  
September 1, 2016
Annales Henri Poincaré

This paper consists of three parts. In part I, we microscopically derive Ginzburg–Landau (GL) theory from BCS theory for translation-invariant systems in which multiple types of superconductivity may coexist. Our motivation are unconventional superconductors. We allow the ground state of the effective gap operator KTc+V to be n-fold degenerate and the resulting GL theory then couples n order parameters. In part II, we study examples of multi-component GL theories which arise from an isotropic BCS theory. We study the cases of (a) pure d-wave order parameters and (b) mixed (s + d)-wave order parameters, in two and three-dimensions. In part III, we present explicit choices of spherically symmetric interactions V which produce the examples in part II. In fact, we find interactions V which produce ground state sectors of KTc+V of arbitrary angular momentum, for open sets of of parameter values. This is in stark contrast with Schrödinger operators −∇2+V, for which the ground state is always non-degenerate. Along the way, we prove the following fact about Bessel functions: At its first maximum, a half-integer Bessel function is strictly larger than all other half-integer Bessel functions.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés