Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Implicit QR algorithms for palindromic and even eigenvalue problems
 
research article

Implicit QR algorithms for palindromic and even eigenvalue problems

Kressner, D.  
•
Schröder, C.
•
Watkins, D. S.
2009
Numerical Algorithms

In the spirit of the Hamiltonian QR algorithm and other bidirectional chasing algorithms, a structure-preserving variant of the implicit QR algorithm for palindromic eigenvalue problems is proposed. This new palindromic QR algorithm is strongly backward stable and requires less operations than the standard QZ algorithm, but is restricted to matrix classes where a preliminary reduction to structured Hessenberg form can be performed. By an extension of the implicit Q theorem, the palindromic QR algorithm is shown to be equivalent to a previously developed explicit version. Also, the classical convergence theory for the QR algorithm can be extended to prove local quadratic convergence. We briefly demonstrate how even eigenvalue problems can be addressed by similar techniques. © 2008 Springer Science+Business Media, LLC.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ksw.pdf

Access type

openaccess

Size

333.46 KB

Format

Adobe PDF

Checksum (MD5)

b2d366978f716d013dc51e3000c64a85

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés