Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte
 
research article

Stable and Efficient Organic Dye-Sensitized Solar Cell Based on Ionic Liquid Electrolyte

Wang, Peng
•
Yang, Lin  
•
Wu, Heng
Show more
October 17, 2018
Joule

Dye-sensitized solar cells (DSCs) for outdoor applications must show both high efficiency and long-term stability. Here we introduce a co-sensitized, ionic liquid electrolyte-based DSC meeting these requirements. A key feature of our embodiment is the concerted action of two judiciously designed organic dyes, whose co-adsorption at the surface of a mesoscopic TiO(2 )scaffold results in the formation of a compact and highly robust self-assembled monolayer, harvesting sunlight across the whole visible region and converting the photons into charges with near-unity quantum efficiency. Apart from producing a high photocurrent, the dense dye layer blocks the back electron transfer from TiO2 to the redox electrolyte, increasing the photovoltage. This allows for the first time to attain a solar to electric power-conversion efficiency of 10% with an ionic liquid-based DSC Remarkably, the co-sensitized cell is stable under both full-sunlight soaking at 60 degrees C and heat stress at 85 degrees C for 1,000 hr.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés