Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A multi-material robotic finger with integrated proprioceptive and tactile capabilities produced with a circular process
 
conference paper

A multi-material robotic finger with integrated proprioceptive and tactile capabilities produced with a circular process

Georgopoulou, Antonia
•
Hamelryckx, Stijn
•
Junge, Kai  
Show more
January 1, 2023
2023 Ieee International Conference On Soft Robotics, Robosoft
IEEE International Conference on Soft Robotics (RoboSoft)

When developing or designing biomimetic robotic fingers with rigid and soft components and integrated sensors, fabrication is often a bottle-neck when assembling and casting processing techniques are used. This study introduces a thermoplastic multi-material fabrication approach that allows the printing of fingers with incorporated sensing elements in a single shot. Thermoplastics and thermoplastic elastomers based materials have been selected to demonstrate the circular fabrication process. To exhibit the potential of the method, a sensorized multi-material finger was fabricated using polypropylene (PP) for the rigid bone, styrene-based tri-block co-polymer (TPS) for the soft skin and resistive composites based on TPS and carbon black (CB) for the sensing. The 3D printer was equipped with combined pellet- and filament-based extruders to enable the combined fabrication processing of the materials without additional assembling. This allowed the exploration of a range of designs with different geometric and infill properties. To demonstrate the circular process, the fabricated fingers were recycled and the mechanical properties did not result in a visible degradation. The described multi-material fabrication of soft robotic components allows time efficiency of the production method and the reusability of the materials, which contribute to establishing a sustainable circular process in the future.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés