Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. Optimal voltage control processes in active distribution networks
 
book part or chapter

Optimal voltage control processes in active distribution networks

Paolone, Mario  
•
Le Boudec, Jean-Yves  
•
Christakou, Konstantina  
Show more
Milano, Federico
2015
Advanced Techniques for Power System Modelling, Control and Stability Analysis

Typical optimal controls of power systems, such as scheduling of generators, voltage control, losses reduction, have been so far commonly investigated in the domain of high-voltage transmission networks. However, during the past years, the increased connection of distributed energy resources (DERs) in power distribution systems results in frequent violations of operational constraints in these networks and has raised the importance of developing optimal control strategies specifically applied to these systems. In particular, two of the most important control functionalities that have not yet been deployed in active distribution networks (ADNs) are voltage control and lines congestion management. Usually, this category of problems has been treated in the literature by means of linear approaches applied to the dependency between voltages and power flows as a function of the power injections. On the one hand, recent progress in information and communication technologies, the introduction of new advanced metering devices such as phasor measurement units and the development of real-time state estimation algorithms present new opportunities and will, eventually, enable the deployment of processes for optimal voltage control and lines congestion management in distribution networks. On the other hand, ADNs exhibit specific peculiarities that render the design of such controls compelling. In particular, it is worth noting that the solution of optimal problems becomes of interest only if it meets the stringent time constraints required by real-time controls and imposed by the stochasticity of DERs, in particular photovoltaic units (PVs), largely present in these networks. Moreover, control schemes are meaningful for implementation in real-time controllers only when convergence to an optimal solution is guaranteed. Finally, control processes for ADNs need to take into account the inherent multi-phase and unbalanced nature of these networks, as well as the non-negligible R/X ratio of longitudinal parameters of the medium and low-voltage lines, together with the influence of transverse capacitances. Taking into consideration the aforementioned requirements, the distribution management systems (DMSs) need to be updated accordingly in order to incorporate optimization processes for the scheduling of the DERs. This chapter starts with a general description of a centralized DMS architecture that includes voltage control and lines congestion management functionalities. Then, the formulation of the corresponding optimal control problems is described, based on a linearized approach linking control variables, e.g., power injections, transformers tap positions, and controlled quantities, e.g., voltages, current flows, by means of sensitivity coefficients. Computation processes for these sensitivity coefficients are presented in Sections 8.2 and 8.3. Finally, in Section 8.4, we provide case studies of optimal voltage control and lines congestion management targeting IEEE distribution reference networks suitably modified to integrate distributed generation.

  • Files
  • Details
  • Metrics
Type
book part or chapter
Author(s)
Paolone, Mario  
Le Boudec, Jean-Yves  
Christakou, Konstantina  
Tomozei, Dan-Cristian  
Editors
Milano, Federico
Date Issued

2015

Publisher

The Institution of Engineering and Technology - IET

Publisher place

London, UK

Published in
Advanced Techniques for Power System Modelling, Control and Stability Analysis
ISBN of the book

978-1-78561-001-1

Start page

275

End page

310

Subjects

Active distribution networks

•

Ancillary services

•

Distributed energy resources

•

Electrical distribution networks

•

Congestion management

•

Optimal control

•

Real-time operation

•

Optimisation

•

Unbalanced distribution networks

•

Primary voltage control

•

Voltage/current sensitivity coefficients

•

epfl-smartgrids

URL

URL

http://www.theiet.org/resources/books/energy/advapow.cfm
Written at

EPFL

EPFL units
DESL  
LCA2  
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/128155
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés