Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Time scales of dynamic stall development on a vertical-axis wind turbine blade
 
research article

Time scales of dynamic stall development on a vertical-axis wind turbine blade

Le Fouest, Sébastien  
•
Fernex, Daniel  
•
Mulleners, Karen  
2023
Flow. Applications on Fluid Mechanics

Vertical-axis wind turbines are excellent candidates to diversify wind energy technology, but their aerodynamic complexity limits industrial deployment. To improve the efficiency and lifespan of vertical-axis wind turbines, we desire data-driven models and control strategies that take into account the timing and duration of subsequent events in the unsteady flow development. Here, we aim to characterise the chain of events that leads to dynamic stall on a vertical-axis wind turbine blade and to quantify the influence of the turbine operation conditions on the duration of the individual flow development stages. We present time-resolved flow and unsteady load measurements of a wind turbine model undergoing dynamic stall for a wide range of tip-speed ratios. Proper orthogonal decomposition is used to identify dominant flow structures and to distinguish six characteristic stall stages: the attached flow, shear-layer growth, vortex formation, upwind stall, downwind stall and flow reattachment stage. The timing and duration of the individual stages are best characterised by the non-dimensional convective time. Dynamic stall stages are also identified based on aerodynamic force measurements. Most of the aerodynamic work is done during the shear-layer growth and the vortex formation stage which underlines the importance of managing dynamic stall on vertical-axis wind turbines.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

time-scales-of-dynamic-stall-development-on-a-vertical-axis-wind-turbine-blade.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.57 MB

Format

Adobe PDF

Checksum (MD5)

ea63bc18a23f4a89da536fae88ace893

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés