Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Soft Cell Simulator: A tool to study Soft Multi-Cellular Robots
 
conference paper

Soft Cell Simulator: A tool to study Soft Multi-Cellular Robots

Germann, Jürg Markus  
•
Maesani, Andrea  
•
Stöckli, Manuel
Show more
2013
Proceedings of the IEEE International Conference on Robotics and Biomimetics
IEEE International Conference on Robotics and Biomimetics

Modular or multi-cellular robots hold the promise to adapt their morphology to task and environment. However, research in modular robotics has traditionally been limited to mechanically non-adaptive systems due to hard building blocks and rigid connection mechanisms. To improve adaptation and global flexibility, we suggest the use of modules made of soft materials. Thanks to recent advances in fabrication techniques the development of soft robots without spatial or material constraints is now possible. In order to exploit this vast design space, computer simulations are a time and cost-efficient tool. However, there is currently no framework available that allows studying the dynamics of soft multi-cellular systems. In this work, we present our simulation framework named Soft Cell Simulator (SCS) that enables to study both mechanical design parameters as well as control problems of soft multi-cellular systems in an time-efficient yet globally accurate manner. Its main features are: (i) high simulation speed to test systems with a large number of cells (real-time up to 100 cells), (ii) large non-linear deformations without module self-penetration, (iii) tunability of module softness (0-500 N/m), (iv) physics-based module connectivity, (v) variability of module shape using internal actuators. We present results that validate the plausibility of the simulated soft cells, the scalability as well as the usability of the simulator. We suggest that this simulator helps to master and leverage the potential of the vast design space to generate novel soft multi-cellular robots.

  • Files
  • Details
  • Metrics
Type
conference paper
DOI
10.1109/ROBIO.2013.6739644
Author(s)
Germann, Jürg Markus  
Maesani, Andrea  
Stöckli, Manuel
Floreano, Dario  
Date Issued

2013

Published in
Proceedings of the IEEE International Conference on Robotics and Biomimetics
Start page

1300

End page

1305

Subjects

Modular Robotics

•

Soft Robotics

•

Physics-based Simulations

•

Evolutionary Robotics

Note

NCCR, softSRrobots

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LIS  
NCCR-ROBOTICS  
Event nameEvent placeEvent date
IEEE International Conference on Robotics and Biomimetics

Shenzhen, China

December 12-14, 2013

Available on Infoscience
January 27, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/100174
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés