Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Emergence of Friedmann Equation of Cosmology of a Flat Universe from the Time-Energy Uncertainty Principle
 
research article

Emergence of Friedmann Equation of Cosmology of a Flat Universe from the Time-Energy Uncertainty Principle

Cooray, Vernon
•
Cooray, Gerald
•
Rachidi, Farhad  
2017
Journal of Modern Physics

Friedmann equation of cosmology is based on the field equations of general relativity. Its derivation is straight-forward once the Einstein’s field equations are given and the derivation is independent of quantum mechanics. In this paper, it is shown that the Friedmann equation pertinent to a homogeneous, isotropic and flat universe can also be obtained as a consequence of the energy balance in the expanding universe between the positive energy associated with vacuum and matter, and the negative gravitational energy. The results obtained here is a clear consequence of the fact that the surface area of the Hubble sphere is proportional to the total amount of information contained within it.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés