Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Assistance using adaptive oscillators: Robustness to errors in the identification of the limb parameters
 
conference paper

Assistance using adaptive oscillators: Robustness to errors in the identification of the limb parameters

Rinderknecht, Mike Domenik
•
Delaloye, Fabien Andre
•
Crespi, Alessandro  
Show more
2011
2011 IEEE International Conference On Rehabilitation Robotics (ICORR)
IEEE International Conference on Rehabilitation Robotics (ICORR)/International Neurorehabilitation Symposium (INRS)/International Conference on Virtual Rehabilitation (ICVR)

This paper provides a robustness analysis of the method we recently developed for rhythmic movement assistance using adaptive oscillators. An adaptive oscillator is a mathematical tool capable of extracting high-level features (i.e. amplitude, frequency, offset) of a quasi-sinusoidal measured movement, a rhythmic flexion-extension of the elbow in this case. By the use of a simple inverse dynamical model, the system can predict the torque produced by a human participant, such that a fraction of this estimated torque is fed back through a series elastic actuator to provide movement assistance. This paper objectives are twofold. First, we introduce a new 1 DOF assistive device developed in our lab. Second, we derive model-based predictions and conduct experimental validations to measure the variations in movement frequency as a function of the open parameters of the inverse dynamical model. As such, the paper provides an estimation of the robustness of our method due to model approximations. As main result, the paper reveals that the movement frequency is particularly robust to errors in the estimation of the damping coefficient. This is of high interest for the applicability of our approach, this parameter being in general the most difficult to identify.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés