Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The physics of electron internal transport barriers in the TCV tokamak
 
research article

The physics of electron internal transport barriers in the TCV tokamak

Coda, S.  
•
Asp, E.  
•
Fable, E.  
Show more
2007
Nuclear Fusion

Electron internal transport barriers (elTBs) are generated in the TCV tokamak with strong electron cyclotron resonance heating in a variety of conditions, ranging from steady-state fully noninductive scenarios to stationary discharges with a finite inductive component and finally to transient current ramps without current drive. The confinement improvement over L-mode ranges from 3 to 6; the bootstrap current fraction is invariably large and is above 70% in the highest confinement cases, with good current profile alignment permitting the attainment of steady state. Barriers are observed both in the electron temperature and density profiles, with a strong correlation both in location and in steepness. The dominant role of the current profile in the formation and properties of elTBs has been conclusively proven in a TCV experiment exploiting the large current drive efficiency of the Ohmic transformer: small current perturbations accompanied by negligible energy transfer dramatically alter the confinement. The crucial element in the formation of the barrier is the appearance of a central region of negative magnetic shear, with the barrier strength improving with increasingly steep shear. This connection has also been corroborated by transport modelling assisted by gyrofluid simulations. Rational safety-factor (q) values do not appear to play a role in the barrier formation, at least in the q range 1.3-2.3, as evidenced by the smooth dependence of the confinement enhancement on the loop voltage over a broad elTB database. MHD mode activity is however influenced by rational q values and results in a complex, sometimes cyclic, dynamic evolution.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1088/0029-5515/47/7/023
Web of Science ID

WOS:000248499800040

Author(s)
Coda, S.  
Asp, E.  
Fable, E.  
Goodman, T. P.  
Sauter, O.  orcid-logo
Udintsev, V. S.
Behn, R.  
Henderson, M. A.  
Marinoni, A.  
Turri, G. P.
Show more
Date Issued

2007

Publisher

International Atomic Energy Agency

Published in
Nuclear Fusion
Volume

47

Issue

7

Start page

714

End page

720

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/22437
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés