Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Power-law behavior of beat-rate variability in monolayer cultures of neonatal rat ventricular myocytes
 
research article

Power-law behavior of beat-rate variability in monolayer cultures of neonatal rat ventricular myocytes

Kucera, J. P.
•
Heuschkel, Marc Olivier
•
Renaud, Philippe  
Show more
2000
Circulation Research

It is known that extracardiac factors (nervous, humoral, and hemodynamic) participate in the power-law behavior of heart-rate variability. To assess whether intrinsic properties of cardiac tissue might also be involved, beat- rate variability was studied in spontaneously beating cell cultures devoid of extracardiac influences. Extracellular electrograms were recorded from monolayer cultures of neonatal rat ventricular myocytes under stable incubating conditions for up to 9 hours. The beat-rate time series of these recordings were examined in terms of their Fourier spectra and their Hurst scaling exponents. A non-0 Hurst exponent was found in 21 of 22 preparations (0.39+/-0.09; range, 0.11 to 0.45), indicating the presence of fractal self-similarity in the beat-rate time series. The same preparations exhibited power-law behavior of the power spectra with a power-law exponent of - 1.36+/-0.24 (range, - 1.04 to -1.96) in the frequency range of 0.001 to 1 Hz. Furthermore, it was found that the power-law exponent was nonstationary over time. These results indicate that the power-law behavior of heart-rate variability is determined not only by extracardiac influences but also by components intrinsic to cardiac tissue. Furthermore, the presence of power-law behavior in monolayer cultures of cardiomyocytes suggests that beat-rate variability might be determined by the complex nonlinear dynamics of processes occurring at the level of the cellular network, eg, interactions among a large number of cell oscillators or metabolic regulatory systems.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1161/01.RES.86.11.1140
Web of Science ID

WOS:000087571800008

Author(s)
Kucera, J. P.
Heuschkel, Marc Olivier
Renaud, Philippe  
Rohr, S.
Date Issued

2000

Published in
Circulation Research
Volume

86

Issue

11

Start page

1140

End page

1145

Subjects

acute myocardial-infarction

•

heart-rate-variability

•

nonlineardynamics

•

spectrum analysis

•

fluctuation

•

propagation

•

cells

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMIS4  
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/216150
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés