Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Experimental and theoretical investigation of crystallography and variant selection during massive transformation in Zr alloy
 
research article

Experimental and theoretical investigation of crystallography and variant selection during massive transformation in Zr alloy

Wang, J. M.
•
Luan, B. F.
•
Xin, R. L.
Show more
May 19, 2019
Philosophical Magazine

Massive transformation, as a non-conventional solid-state phase transformation mode, is scarcely observed in metals with hexagonal closed packed (HCP) structure, especially in Zr and its alloys. In this study, however, we report the massive transformation in a Zr-1.0Cr-0.4Fe alloy after conventional beta-quenching. It is shown that the necessary condition to induce the occurrence of massive transformation requires an appropriate composition and cooling rate of the alloy to be simultaneously within reasonable ranges. We combine the electron backscatter diffraction (EBSD) and crystallographic reconstruction techniques to systematically assess the orientation relationship between massive grain (alpha(m)) and its beta parent grain. It is demonstrated that, similar to martensitic transformation, the orientation between alpha(m) and beta parent grain during massive transformation satisfies Burgers orientation relationship, i.e. and . Furthermore, a statistical analysis of EBSD data shows that variant selection occurs during massive transformation due to pre-existing beta-beta grain boundary. Based on mathematical theory and crystallographic calculations, we further explore the detailed mechanisms of variant selection during massive transformation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés