Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fast Distributed Correlation Discovery Over Streaming Time-Series Data
 
conference paper not in proceedings

Fast Distributed Correlation Discovery Over Streaming Time-Series Data

Guo, Tian  
•
Sathe, Saket  
•
Aberer, Karl  
2015
ACM International Conference on Information and Knowledge Management (CIKM 2015)

The dramatic rise of time-series data in a variety of contexts, such as social networks, mobile sensing, data centre monitoring, etc., has fuelled interest in obtaining real-time insights from such data using distributed stream processing systems. One such extremely valuable insight is the discovery of correlations in real-time from large-scale time-series data. A key challenge in discovering correlations is that the number of time-series pairs that have to be analyzed grows quadratically in the number of time-series, giving rise to a quadratic increase in both computation cost and communication cost between the cluster nodes in a distributed environment. To tackle the challenge, we propose a framework called AEGIS. AEGIS exploits well-established statistical properties to dramatically prune the number of time-series pairs that have to be evaluated for detecting interesting correlations. Our extensive experimental evaluations on real and synthetic datasets establish the efficacy of AEGIS over baselines.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés