Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Guaranteed recovery of a low-rank and joint-sparse matrix from incomplete and noisy measurements
 
conference presentation

Guaranteed recovery of a low-rank and joint-sparse matrix from incomplete and noisy measurements

Golbabaee, Mohammad  
•
Vandergheynst, Pierre  
2011
SPARS11

Assume a multichannel data matrix, which due to the column-wise dependencies, has low-rank and joint-sparse representation. This matrix wont have many degrees of freedom. Enormous developments over the last decade in areas of compressed sensing and low-rank matrix recovery, let us thinking of acquiring the whole matrix elements from very few non-adaptive linear measurements. This paper attempts to answer the following questions: what should be those measurements? How to design a computationally tractable algorithm to recover data from noisy measurements? Finally, how the recovery method performs, and is it stable for approximately low-rank or not exactly joint-sparse matrices?

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés