Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. The Analog Formulation of Sparsity Implies Infinite Divisibility and Rules Out Bernoulli-Gaussian Priors
 
conference paper

The Analog Formulation of Sparsity Implies Infinite Divisibility and Rules Out Bernoulli-Gaussian Priors

Amini, Arash  
•
Kamilov, Ulugbek S.
•
Unser, Michael  
2012
2012 Ieee Information Theory Workshop (Itw)
IEEE Information Theory Workshop (ITW)

Motivated by the analog nature of real-world signals, we investigate continuous-time random processes. For this purpose, we consider the stochastic processes that can be whitened by linear transformations and we show that the distribution of their samples is necessarily infinitely divisible. As a consequence, such a modeling rules out the Bernoulli-Gaussian distribution since we are able to show in this paper that it is not infinitely divisible. In other words, while the Bernoulli-Gaussian distribution is among the most studied priors for modeling sparse signals, it cannot be associated with any continuous-time stochastic process. Instead, we propose to adapt the priors that correspond to the increments of compound Poisson processes, which are both sparse and infinitely divisible.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés