Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Rapid Gas Transport from Block-Copolymer Templated Nanoporous Carbon Films
 
research article

Rapid Gas Transport from Block-Copolymer Templated Nanoporous Carbon Films

Dakhchoune, Mostapha  
•
Duan, Xuekui  
•
Villalobos, Luis F.
Show more
November 10, 2021
Industrial & Engineering Chemistry Research

Porous carbon films, attributed to their superior thermal and chemical robustness, are attractive for a number of applications. In the context of molecular separation, a major focus has been on films where the effective pore diameter is lower than 1 nm, e.g., carbon molecular sieves. Only a handful of reports are available on carbon films hosting 2-3 nm size pore channels where gas transport mainly takes place by Knudsen diffusion in contrast to activated transport. Recently, we reported nanoporous carbon (NPC) films, by the pyrolysis of phase-separated blockcopolymer/turanose films, as a gas-permeable mechanical reinforcement for crack-free synthesis of single-layer graphene membranes. However, a dedicated study on the nanostructure and transport properties of the standalone NPC film has been missing. Herein, we show that the NPC film has a perforated lamellar (PL) nanostructure where molecular transport is limited by an interlamellar spacing of similar to 2 nm. The unique PL nanostructure of the NPC film originates from its precursor, i.e., a block-copolymer stabilized by hydrogen bonding with a carbohydrate additive, where the latter also acts as the main carbon-forming agent. This nanostructure is highly sensitive to the carbohydrate/block-copolymer ratio and gives way to a lacey structure below a ratio of 2:1. The transport of gases through the interlamellar spacing takes place predominantly in the Knudsen regime, determined by their molecular mass. Attributed to a thickness of 100 nm, the film yields extremely rapid gas transport with a H-2 permeance over two million gas permeation units (GPU) and H-2/CO2 selectivity over 4.5 in a temperature range of 25-300 degrees C. These properties make the NPC film a promising membrane support and a good choice for the mechanical reinforcement for high-permeance twodimensional membranes for gas separation.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés