Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Two-Wired High Input Impedance and High CMRR Active Electrode Insensitive to Component Mismatch
 
research article

A Two-Wired High Input Impedance and High CMRR Active Electrode Insensitive to Component Mismatch

Jafari, Gholamreza
•
Qouchani, Mohammad Tavakkoli
•
Saberi, Mehdi  
Show more
January 1, 2024
Ieee Transactions On Instrumentation And Measurement

This article proposes a new two-wired amplifying active electrode (AE), presenting a high input impedance and a high common-mode rejection ratio (CMRR). In the proposed structure, the input impedance and the CMRR of the system are considerably increased by extracting the body common-mode (CM) signal and applying it to AEs. Moreover, the CMRR of the proposed structure is less sensitive to the mismatch existing between voltage gains of different AEs. In addition, the power-to-noise efficiency of the system is improved because the proposed circuit presents a high-voltage gain. A prototype is implemented using discrete components for electrocardiogram (ECG) recording, while the employed passive components are selected to have a voltage gain of 100 with 1% tolerance. The measurement results show that the proposed structure achieves a 107-dB CMRR at the fundamental power-line frequency (i.e., 50 Hz) with a 1.2-M Omega source impedance unbalance. Moreover, it presents an input-referred noise voltage equal to 1.6 mu V-RMS in a 0.5-100-Hz bandwidth and an input capacitance of only 2 fF.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés