Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Abatement of an Azo Dye on Structured C-Nafion/Fe-Ion Surfaces by Photo-Fenton Reactions Leading to Carboxylate Intermediates with a Remarkable Biodegradability Increase of the Treated Solution
 
research article

Abatement of an Azo Dye on Structured C-Nafion/Fe-Ion Surfaces by Photo-Fenton Reactions Leading to Carboxylate Intermediates with a Remarkable Biodegradability Increase of the Treated Solution

Parra, S.  
•
Guasaquillo, I.
•
Enea, O.
Show more
2003
The Journal of Physical Chemistry B

A novel C-Nafton/Fe-ion structured fabric capable of mediating Orange II decomposition in Fenton-immobilized photoassisted reactions is presented. The catalyst preparation requires the right balance between the amount of the Nafion necessary to protect the C-surface and the minimum encapsulation of the Fe-cluster catalytic sites inside the Nafion to allow the photocatalysis to proceed. The C-Nafion/Fe fabric can be used up to pH 10 under light to photocatalyze the disappearance of Orange II in the presence of H2O2. The photocatalysis mediated by the C-Nafion/Fe-ion fabric increased with the applied light intensity and reaction temperature in the reaction needing an activation energy of 9.8 kcal/mol. This indicates that ion- and radical-molecule reactions take place during Orange II disappearance. The build up and decomposition of intermediate iron complexes under light involves the recycling of Fe2+ and was detected by infrared spectroscopy (FTIR). This observation, along with other experimental results, allows us to suggest a surface mechanism for the dye degradation on the C-Nafion/Fe-ion fabrics. The C-Nafion/Fe-ion fabric in the presence of H2O2 under solar simulated light transforms the totally nonbiodegradable Orange II into a biocompatible material with a very high BOD5/COD value. X-ray photoelectron spectroscopy (XPS) and sputtering by Ar+-ions of the upper surface layer of the C-Nafion/Fe-ion fabric allow us to describe the intervention of the photocatalyst down to the molecular level. Most of the Fe clusters examined by transmission electron microscopy (TEM) showed particle sizes close to 4 nm due to their encapsulation into the Gierke cages of the Nafion thin film observed by scanning electron microscopy (SEM) and optical microscopy (OM).

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés