Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Time-Varying Segmentation for Mapping of Land Cover Changes
 
conference paper

Time-Varying Segmentation for Mapping of Land Cover Changes

Aspert, François
•
Bach-Cuadra, Meritxell  
•
Cantone, Alessio
Show more
2007
ENVISAT Symposium
ENVISAT Symposium

Among all satellite imaging systems, Synthetic Aperture Radar (SAR) is useful for monitoring purposes, as they provide data at any time under all weather conditions. Today, three spaceborne SAR systems are operational, while by the end of 2007 three further SAR instruments will be launched, thereby allowing to obtain an almost continuous monitoring of the Earth coverage. In order to translate these multi-temporal data into information in an unsupervised (automated) and reliable way, sophisticated algorithms must be available. In the past years several approaches - primarily based on texture analysis and statistical scene estimation - have been proposed for multi-temporal SAR data analysis. Such methods, based on probability density functions, perform well under strictly controlled conditions, but they are often limited with respect to sensor synergy where complex joint probability density functions must be considered - and to the temporal aspect. To address these limitations, an original set of algorithms for the unsupervised multi-temporal SAR data analysis is proposed. To this end, several issues have been tackled: filtering, edge detection, and image segmentation. Moreover, condition sine qua non for the system design, was that i) it is sensor independent, and ii) data from different SAR systems can be ingested without any a-priori knowledge about the probability density function. Basically, the proposed time varying segmentation involves four independent steps. In a first step, a multi-temporal anisotropic non-linear diffusion filter is applied to filter the images which ultimately allow feature extraction. Subsequently, an extension of Canny edge detection algorithm for multi-temporal edge detection is applied, hence obtaining an edge map consistent across the whole sequence of temporal images. In a third step, closed regions are obtained using a two-part coding scheme with the edge map (as side information) and region growing technique (using the multi-temporal stack). Finally, the number of underlying spectral class composing a segment histogram at every frame is estimated, thus detecting changes due to temporal land cover fluctuations. Results are presented based on a set of 16 ENVISAT ASAR Alternating Polarization and Radarsat-1 Fine Beam images acquired between November 2004 and July 2005 for an agricultural (maize and sun flower) area in South Africa.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TVS.pdf

Access type

openaccess

Size

362.67 KB

Format

Adobe PDF

Checksum (MD5)

013ccad89d183b140f93689465226283

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés