Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Data-driven adaptive building thermal controller tuning with constraints: A primal-dual contextual Bayesian optimization approach
 
research article

Data-driven adaptive building thermal controller tuning with constraints: A primal-dual contextual Bayesian optimization approach

Xu, Wenjie  
•
Svetozarevic, Bratislav
•
Di Natale, Loris
Show more
January 9, 2024
Applied Energy

We study the problem of tuning the parameters of a room temperature controller to minimize its energy consumption, subject to the constraint that the daily cumulative thermal discomfort of the occupants is below a given threshold. We formulate it as an online constrained black -box optimization problem where, on each day, we observe some relevant environmental context and adaptively select the controller parameters. In this paper, we propose to use a data -driven Primal -Dual Contextual Bayesian Optimization (PDCBO) approach to solve this problem.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés