Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Teaching Materials
  4. Process Design and Optimization (MLS-S03): Model Identification by Gradient Methods
 
teaching material

Process Design and Optimization (MLS-S03): Model Identification by Gradient Methods

Billeter, Julien  
2013

This lecture describes the following topics: <br><br> • Dynamic Models <br>    - Conservation of Mass (Concentration Measurements) <br>    - Conservation of Energy (Calorimetry) <br>    - Beer’s Law (Spectroscopy) <br><br> • Integration of Dynamic Models <br>    - Euler’s Method <br>    - Runge-Kutta’s Methods (RK) <br><br> • Linear Regression Problems (OLS) <br>    - Calibration-free Calorimetry and Spectroscopy <br><br> • Gradient-based Nonlinear Regression Methods (NLR) <br>    - Steepest Descent Method <br>    - Newton-Raphson and Newton-Gauss Methods (NG) <br>    - Newton-Gauss Levenberg Marquardt Method (NGLM) <br><br> • References

  • Files
  • Details
  • Metrics
File(s)
Loading...
Thumbnail Image
Name

Presentation HES Fribourg 2013.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

406.53 KB

Format

Adobe PDF

Checksum (MD5)

d3793b58dae86179ed0765688efba055

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés