Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dot trajectories in the superposition of random screens: Analysis and synthesis
 
research article

Dot trajectories in the superposition of random screens: Analysis and synthesis

Amidror, Isaac  
2004
Journal of the Optical Society of America A: Optics and Image Science, and Vision

Moire effects that occur in the superposition of aperiodic layers such as correlated random dot screens are known as Glass patterns. One of the most interesting properties of such moire effects, which clearly distinguish them from their periodic counterparts, is undoubtedly the appearence in the superposition of intriguing microstructure dot alignments, also known as dot trajectories. These dot trajectories may have different geometric shapes, depending on the transformations undergone by the superposed layers. In the case of simple linear transformations such as layer rotations or layer scalings, the resulting dot trajectories are rather simple (circular, radial, spiral, elliptic, hyperbolic, linear, etc.); but in more complex layer transformations the dot trajectories can have much more interesting and surprising shapes. A full mathematical analysis of the dot trajectories, their morphology, and their various properties is provided. Furthermore, it is shown how the approach also allows us to synthesize correlated random screens that give in their superposition dot trajectories having any desired geometric shapes. Finally, it is also explained why such dot trajectories are visible only in superpositions of aperiodic screens but not in superpositions of periodic screens. © 2004 Optical Society of America.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

dtitsorsaas.pdf

Access type

openaccess

Size

4.75 MB

Format

Adobe PDF

Checksum (MD5)

aecfcdbaa48ffdfc5d4735bf915e9554

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés