A novel catalytic reactor with dielectric barrier discharge (DBD) at atmospheric pressure was developed for the abatement of volatile organic compounds (VOCs). The novelty of DBD reactor is the metallic catalyst serving also as the inner electrode. The catalytic electrode was prepared from sintered metal fibers (SMF) in the form of a cylindrical tube. Oxides of Mn and Co were deposited on SMF by impregnation. Decomposition of toluene taken as the model VOC compound (< 1000 ppm in air) was investigated. The catalyst composition, toluene concentration, applied voltage and frequency were systematically varied to evaluate the performance of the DBD reactor. At 100 ppm of toluene, the conversion similar to 100% was achieved in the DBD reactor using a specific input energy (SIE) similar to 235 J/l independently of the chemical composition of the SMF catalytic electrode, but the selectivity to CO2 was observed to be a function of the catalyst composition. The MnOx/SMF catalytic electrode showed the best performance towards total oxidation. At a SIE of 295 J/l, the selectivity to CO2, was 80% with 100% conversion of toluene. No carbon solid residues were deposited on the electrode. (c) 2006 Elsevier B.V. All rights reserved.