Piecewise linear differential equations and integrate-and-fire neurons : insights from two-dimensional membrane models

We derive and study two-dimensional generalizations of integrate-and-fire models which can be found from a piecewise linear idealization of the FitzHugh-Nagumo or Morris-Lecar model. These models give rise to new properties not present in one-dimensional integrate-and-fire models. A detailed analytical study of the models is presented. In particular, (i) for the piecewise linear FitzHugh-Nagumo model, we determine analytically the bistability regime between stationary solutions and oscillations, that is, typical for class-II models. (ii) In the piecewise Morris-Lecar model, we find a noncanonical class-I transition from a stationary state to oscillations with logarithmic dependence similar to that found for leaky integrate-and-fire models. (iii) Furthermore, we establish a relation to the recently proposed resonate-and-fire model and show that a short input current pulse can trigger several spikes.


Published in:
Phys. Rev. E, 67, 2, 21908
Year:
2003
Note:
article
Other identifiers:
Laboratories:




 Record created 2006-12-12, last modified 2018-01-27

External link:
Download fulltext
n/a
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)